Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Sci (Lond) ; 137(7): 543-559, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2285529

ABSTRACT

Poor disease outcomes and lethality are directly related to endothelial dysfunction in betacoronavirus infections. Here, we investigated the mechanisms underlying the vascular dysfunction caused by the betacoronaviruses MHV-3 and SARS-CoV-2. Wild-type C57BL/6 (WT) and knockout mice for inducible nitric oxide synthase (iNOS-/-) or TNF receptor 1 (TNFR1-/-) were infected with MHV-3, and K18-hACE2 transgenic mice expressing human ACE2 were infected with SARS-CoV-2. Isometric tension was used to evaluate vascular function. Protein expression was determined by immunofluorescence. Tail-cuff plethysmography and Doppler were used to assess blood pressure and flow, respectively. Nitric oxide (NO) was quantified with the DAF probe. ELISA was used to assess cytokine production. Survival curves were estimated using Kaplan-Meier. MHV-3 infection reduced aortic and vena cava contractility, arterial blood pressure, and blood flow, resulting in death. Resistance mesenteric arteries showed increased contractility. The contractility of the aorta was normalized by removing the endothelium, inhibiting iNOS, genetically deleting iNOS, or scavenging NO. In the aorta, iNOS and phospho-NF-kB p65 subunit expression was enhanced, along with basal NO production. TNF production was increased in plasma and vascular tissue. Genetic deletion of TNFR1 prevented vascular changes triggered by MHV-3, and death. Basal NO production and iNOS expression were also increased by SARS-CoV-2. In conclusion, betacoronavirus induces an endothelium-dependent decrease in contractility in macro-arteries and veins, leading to circulatory failure and death via TNF/iNOS/NO. These data highlight the key role of the vascular endothelium and TNF in the pathogenesis and lethality of coronaviruses.


Subject(s)
COVID-19 , Shock , Mice , Humans , Animals , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , SARS-CoV-2/metabolism , Mice, Inbred C57BL , Endothelium, Vascular/metabolism , Nitric Oxide/metabolism , Mice, Transgenic , Mesenteric Arteries/metabolism
2.
Nitric Oxide ; 128: 72-102, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1996454

ABSTRACT

Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.


Subject(s)
COVID-19 , Hydrogen Sulfide , Antiviral Agents , Humans , Hydrogen Sulfide/therapeutic use , Inflammation/drug therapy , Nitric Oxide/therapeutic use , Pandemics , SARS-CoV-2
3.
Biomed Pharmacother ; 153: 113456, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966381

ABSTRACT

Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.


Subject(s)
Dexamethasone , Metformin , Pancreas , Piper nigrum , Plant Oils , Animals , Blood Glucose , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Dyslipidemias/drug therapy , Fibrosis , Insulin Resistance , Metformin/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/drug effects , Pancreas/drug effects , Pancreas/pathology , Piper nigrum/chemistry , Plant Oils/pharmacology , Plant Oils/therapeutic use , Rats , Rats, Wistar , COVID-19 Drug Treatment
4.
Med Hypotheses ; 163: 110842, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783643

ABSTRACT

The treatment of post-acute sequelae of Covid-19 (PASC) has been informed primarily by symptomatic parallels with other chronic inflammatory syndromes. This manuscript takes a more systemic approach by examining how a marginal deficiency of tetrahydrobiopterin (BH4) resulting from mutations of the GCH1 (GTP cyclohydrolase 1) gene may result in the uncoupling of inducible Nitric Oxide Synthase (iNOS) early in the initial response of the innate immune system to SARS-CoV-2. The resulting production of superoxide instead of nitric oxide leads to a self-perpetuating cycle of oxidative stress with the potential to impair numerous metabolic processes and damage multiple organ systems. This marginal deficiency of BH4 may be exhibited by 30% or more of the patient population that have heterozygous or homozygous mutations of GCH1. As the cycle of oxidative stress continues, there is less BH4 available for other metabolic needs such as 1) resisting increased ferroptosis with its damage to organs, and 2) regulating the deactivation of the hyperinflammatory state. Finally, possible steps are proposed for clinical treatment of the hypothesized oxidative stress involved with PASC.

5.
Int J Mol Sci ; 22(24)2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1599176

ABSTRACT

To determine whether mitigating the harmful effects of circulating microvesicle-associated inducible nitric oxide (MV-A iNOS) in vivo increases the survival of challenged mice in three different mouse models of sepsis, the ability of anti-MV-A iNOS monoclonal antibodies (mAbs) to rescue challenged mice was assessed using three different mouse models of sepsis. The vivarium of a research laboratory Balb/c mice were challenged with an LD80 dose of either lipopolysaccharide (LPS/endotoxin), TNFα, or MV-A iNOS and then treated at various times after the challenge with saline as control or with an anti-MV-A iNOS mAb as a potential immunotherapeutic to treat sepsis. Each group of mice was checked daily for survivors, and Kaplan-Meier survival curves were constructed. Five different murine anti-MV-A iNOS mAbs from our panel of 24 murine anti-MV-A iNOS mAbs were found to rescue some of the challenged mice. All five murine mAbs were used to genetically engineer humanized anti-MV-A iNOS mAbs by inserting the murine complementarity-determining regions (CDRs) into a human IgG1,kappa scaffold and expressing the humanized mAbs in CHO cells. Three humanized anti-MV-A iNOS mAbs were effective at rescuing mice from sepsis in three different animal models of sepsis. The effectiveness of the treatment was both time- and dose-dependent. Humanized anti-MV-A iNOS rHJ mAb could rescue up to 80% of the challenged animals if administered early and at a high dose. Our conclusions are that MV-A iNOS is a novel therapeutic target to treat sepsis; anti-MV-A iNOS mAbs can mitigate the harmful effects of MV-A iNOS; the neutralizing mAb's efficacy is both time- and dose-dependent; and a specifically targeted immunotherapeutic for MV-A iNOS could potentially save tens of thousands of lives annually and could result in improved antibiotic stewardship.


Subject(s)
Cell-Derived Microparticles/metabolism , Nitric Oxide Synthase Type II/metabolism , Sepsis/therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Cell-Derived Microparticles/immunology , Disease Models, Animal , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/immunology , Tumor Necrosis Factor-alpha/pharmacology
6.
Int J Mol Sci ; 22(18)2021 Sep 11.
Article in English | MEDLINE | ID: covidwho-1470886

ABSTRACT

During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.


Subject(s)
Curcumin/therapeutic use , Glioblastoma/drug therapy , Neoplasms, Experimental/drug therapy , Uterine Cervical Neoplasms/drug therapy , Animals , Female , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Nitric Oxide/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology
7.
Molecules ; 26(16)2021 Aug 22.
Article in English | MEDLINE | ID: covidwho-1376916

ABSTRACT

Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.


Subject(s)
Alcohol Drinking/pathology , Cannabinoid Receptor Antagonists/pharmacology , Endotoxemia/pathology , Ethanol/adverse effects , Nitric Oxide Synthase Type II/antagonists & inhibitors , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Alcohol Drinking/blood , Animals , Anxiety/blood , Anxiety/complications , Behavior, Animal/drug effects , Catalepsy/chemically induced , Catalepsy/complications , Cyclohexanols/administration & dosage , Elevated Plus Maze Test , Endotoxemia/blood , Endotoxemia/complications , Endotoxins/blood , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Hypothermia, Induced , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Pyrazoles/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Rimonabant/administration & dosage , Rimonabant/pharmacology , Stereoisomerism , Sulfonamides/administration & dosage
8.
Br J Pharmacol ; 179(10): 2121-2127, 2022 05.
Article in English | MEDLINE | ID: covidwho-1297572

ABSTRACT

COVID-19 (SARS-CoV-2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID-19, there is growing concern about long-term effects of COVID-19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID-19 but also for preventing Long Covid are needed, and would mitigate against long-lasting health burden and economic costs, in addition to saving lives. COVID-19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID-19-related health complications. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/complications , Endocannabinoids , Humans , Lung , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
9.
Phytomed Plus ; 1(4): 100058, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1157665

ABSTRACT

Background: The corona virus disease 2019 (COVID-19) pandemic has highlighted the fact that there are few effective antiviral agents for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although the very recent development of vaccines is an extremely important breakthrough, it remains unclear how long-lived such vaccines will be. The development of new agents therefore remains an important goal. Purpose: Given the multifaceted pathology of COVID-19, a combinatorial formulation may provide an effective treatment. BEN815, a natural nutraceutical composed of extracts from guava leaves (Psidium guajava), green tea leaves (Camellia sinensis), and rose petals (Rosa hybrida), had previously shown to have a therapeutic effect on allergic rhinitis. We investigated whether BEN815 possesses anti-inflammatory, antiviral and antioxidant activities, since the combination of these effects could be useful for the treatment of COVID-19. Study design: We examined the anti-inflammatory effects of BEN815 and its principal active components quercetin and epigallocatechin gallate (EGCG) in lipopolysaccharide (LPS)-induced RAW264.7 cells and in an LPS-challenged mouse model of endotoxemia. We also assessed the antioxidant activity, and antiviral effect of BEN815, quercetin, and EGCG in SARS-CoV-2-infected Vero cells. Methods: The principal active ingredients in BEN815 were determined and quantified using HPLC. Changes in the levels of LPS-induced pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured by ELISA. Changes in the expression levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were analyzed using western blotting. Antioxidant assay was performed using DPPH and ABTS assay. SARS-CoV-2 replication was measured by immunofluorescence staining. Results: BEN815 significantly suppressed the induction of IL-6 and TNF-α as well as COX-2 and iNOS in LPS-induced RAW264.7 cells. In addition, BEN815 protected against LPS-challenged endotoxic shock in mice. Two major constituents of BEN815, quercetin and EGCG, reduced the induction of IL-6 and TNF-α as well as COX-2 and iNOS synthase in LPS-induced RAW264.7 cells. BEN815, quercetin, and EGCG were also found to have antioxidant effects. Importantly, BEN815 and EGCG could inhibit SARS-CoV-2 replications in Vero cells. Conclusion: BEN815 is an anti-inflammatory, antiviral, and antioxidant natural agent that can be used to prevent and improve inflammation-related diseases, COVID-19.

10.
Phytomed Plus ; 1(3): 100043, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1087227

ABSTRACT

Background: Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. Purpose: The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. Methodology: We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo).  These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). Results: Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. Conclusion: The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.

11.
bioRxiv ; 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-915984

ABSTRACT

The COVID-19 pandemic has caused significant morbidity and mortality. Currently, there is a critical shortage of proven treatment options and an urgent need to understand the pathogenesis of multi-organ failure and lung damage. Cytokine storm is associated with severe inflammation and organ damage during COVID-19. However, a detailed molecular pathway defining this cytokine storm is lacking, and gaining mechanistic understanding of how SARS-CoV-2 elicits a hyperactive inflammatory response is critical to develop effective therapeutics. Of the multiple inflammatory cytokines produced by innate immune cells during SARS-CoV-2 infection, we found that the combined production of TNF-α and IFN-γ specifically induced inflammatory cell death, PANoptosis, characterized by gasdermin-mediated pyroptosis, caspase-8-mediated apoptosis, and MLKL-mediated necroptosis. Deletion of pyroptosis, apoptosis, or necroptosis mediators individually was not sufficient to protect against cell death. However, cells deficient in both RIPK3 and caspase-8 or RIPK3 and FADD were resistant to this cell death. Mechanistically, the JAK/STAT1/IRF1 axis activated by TNF-α and IFN-γ co-treatment induced iNOS for the production of nitric oxide. Pharmacological and genetic deletion of this pathway inhibited pyroptosis, apoptosis, and necroptosis in macrophages. Moreover, inhibition of PANoptosis protected mice from TNF-α and IFN-γ-induced lethal cytokine shock that mirrors the pathological symptoms of COVID-19. In vivo neutralization of both TNF-α and IFN-γ in multiple disease models associated with cytokine storm showed that this treatment provided substantial protection against not only SARS-CoV-2 infection, but also sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock models, demonstrating the broad physiological relevance of this mechanism. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other cytokine storm-driven syndromes by limiting inflammation and tissue damage. The findings also provide a molecular and mechanistic description for the term cytokine storm. Additionally, these results open new avenues for the treatment of other infectious and autoinflammatory diseases and cancers where TNF-α and IFN-γ synergism play key pathological roles.

SELECTION OF CITATIONS
SEARCH DETAIL